Notes: AREA & PERIMETER OF TRIANGLES

<u>Content Objective:</u> I will be able to calculate both the perimeter and area of triangles given the side lengths and/or the altitude.

Record the appropriate formulas in the table below:

	DIAGRAM	AREA	PERIMETER
TRIANGLE	a h c		

For Examples # 1 – 2, use the appropriate formulas to determine each of the indicated measures.

EXAMPLE 1:

QUICK CHECK:

EXAMPLE 2:

Area =
$$\underline{\hspace{1cm}}$$
 units²

QUICK CHECK:

Base = _____ Height = _____

Area = _____

Perimeter = _____

For Examples 3 – 5, record the EXACT and APPROXIMATE answers rounded to the tenth place

EXAMPLE 3:

Base = <u>units</u>

Height = <u>units</u>

Height ≈ <u>units</u>

Area = $\underline{\text{units}}^2$

Area ≈ <u>units</u>²

Perimeter = <u>units</u>

QUICK CHECK:

Base = _____

Height = _____

Height ≈ _____

Area = _____

Area ≈ _____

Perimeter = _____

EXAMPLE 4:

Base =	<u>units</u>
Base ≈	<u>units</u>
Height =	<u>units</u>
Height ≈	<u>units</u>
_	

Area =
$$\frac{\text{units}^2}{\text{Perimeter}}$$

QUICK CHECK:

EXAMPLE 5:

Base =	<u>units</u>
Height =	units
Height ≈	units
Area =	<u>units</u> ²
Area ≈	<u>units</u> ²
Perimeter =	units

QUICK CHECK:

Determine the area of the composite figures.

EXAMPLE 6:

QUICK CHECK:

