Content Objective: I will be able to use properties of midsegments.

TERM	DESCRIPTION	EXAMPLE
MIDSEGMENT	A midsegment of a triangle is a segment that connects the MIDPOINTS of two sides of a triangle.	Sketch the 3 midsegments for $\triangle A B C$

1. Draw a right triangle with vertices:

- $\mathbf{A}(0,8)$
- $B(6,0)$
- $\mathbf{C}(0,0)$

2. Find the midpoints of $\overline{A C}$ and $\overline{B C}$.
3. Label the midpoints D and E.
4. Create midsegment $\overline{\mathrm{DE}}$
(connect midpoints D and E).
5. Compare the slopes and lengths of $\overline{A B}$ and $\overline{\mathrm{DE}}:$

	Slope	Length
$\overline{\mathrm{AB}}$	$-4 / 3$	10
$\overline{\mathrm{DE}}$	$-4 / 3$	5

The slopes of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DE}}$ are EQUAL, so $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DE}}$ are PARALLEL.

The length of $\overline{D E}$ is HALF the length of $\overline{A B}$.

TERM	DESCRIPTION	EXAMPLE
MIDSEGMENT THEOREM	A midsegment of a triangle is PARALLEL to the third side and is HALF as long as that side.	
show that it is parallel to the		
third side.		

Parallel lines cut by a TRANSVERSAL produce corresponding ANGLES, which are CONGRUENT. And also SAME-SIDE INTERIOR angles that are SUPPLEMENTERY, their sum is 180°.

If A, B, and C are midpoints, then

$$
\begin{array}{ll}
<\mathrm{HAB}+<\mathrm{HGC} & <\mathrm{ABJ}+<\mathrm{ABH}=180 \\
<\mathrm{HGC}+<\mathrm{GAB}=180 & <J G H=<J C B \\
<\mathrm{GAC}=<\mathrm{GHJ} & <J C A+<G C A=180
\end{array}
$$

CONSTRUCTION: Construct a midsegment $\overline{D E}$ of $\triangle A B C]$

EXAMPLE 1: Use the figure below to complete the statements. Points, Q, P, and O are midpoints.
a) $\overline{\mathrm{LM}} / / \boldsymbol{Q P}$
b) $\overline{\mathrm{OP}} \cong L Q \cong \mathrm{QN}$
c) $\angle O L N+\angle L O P=180$

QUICK CHECK:

a) $\overline{\mathrm{OP}}$ II LN
b) $\overline{\mathrm{NP}} \cong \mathrm{PM} \cong \mathbf{Q O}$

Use $\Delta \mathrm{LMN}$, where O, P, and \mathbf{Q} are midpoints of the sides.
EXAMPLE 2: If $\overline{\mathrm{LN}}=18-4 x$ and $\overline{\mathrm{OP}}=8 \mathrm{x}-16$, what is the value of X and LQ ?
OP=1/2LN
$8 \mathrm{X}-16=1 / 2(18-4 \mathrm{X})$
$X=2.5$
LQ=4

QUICK CHECK: If $\overline{\mathrm{NP}}=x^{2}+5 x-16$ and $\overline{\mathrm{OQ}}=5 x$, what is the value of x and $N M ?$

$$
\begin{aligned}
& \quad N P=O Q \\
& X^{\wedge} 2+5 x-16=5 x \\
& X^{\wedge} 2+5 x-5 x-16=0 \\
& X^{\wedge} 2-16=0 \\
& X^{\wedge} 2=16 \\
& X=+4, x=-4 \\
& X=4 ; N M=40
\end{aligned}
$$

Use $\Delta \mathrm{GHJ}$, where A, B, and C are midpoints of the sides.
EXAMPLE 3: If $\overline{\mathrm{AB}}=5 y-9$ and $\overline{\mathrm{GJ}}=-y+4$ what is the value of y and CJ ?
$A B=1 / 2 G J$

$$
\begin{gathered}
5 Y-9=1 / 2(-y+4) \\
Y=2
\end{gathered}
$$

$$
\mathrm{CJ}=1
$$

QUICK CHECK: If $\overline{\mathrm{AC}}=\frac{1}{2} x+4$ and $\overline{\mathrm{HJ}}=7 x-16$ what is the value of x and HJ ?

$$
\begin{gathered}
A C=1 / 2 H J \\
1 / 2 X+4=1 / 2(7 X-16) \\
X=4 \\
H J=12
\end{gathered}
$$

Use $\Delta \mathrm{GHJ}$, where A, B, and C are midpoints of the sides.
EXAMPLE 4: Find the value of x and the $m \angle G A B$ given $\angle H G J=3 x+5$ and $\angle G A B=6 x-14$.

$$
\begin{array}{r}
<H G J+<\text { GAB }=180 \\
3 X+5+6 X-14=180 \\
X=21
\end{array}
$$

QUICK CHECK: Find the value of x and the $m \angle G H J$ given $\angle \mathrm{JBC}=2 \mathrm{x}-22$ and

$$
\begin{aligned}
\angle G H J=x+16 \quad & \\
\quad<\mathrm{JBC} & =<\mathrm{GHJ} \\
2 \mathrm{X}-22 & =\mathrm{X}+16 \\
\mathrm{X} & =38
\end{aligned}
$$

EXAMPLE 5: The midpoints of the three sides of a triangle are $P(2,0), Q(-4,4)$, and $R(-1,-2)$. Find the length of each midsegment rounded to the nearest tenth and the perimeter of \triangle QPR. Then find the perimeter of the original triangle.

USE THE DISTANCE FORMULA:

$P Q=7.2$
$P R=3.6$
$R Q=6.7$

Perimeter of Δ QPR17.5

Perimeter of the original 35

QUICK CHECK: The midpoints of the three sides of a triangle are $P(0,0), Q(6,-3)$, and $R(4,1)$. Find the length of each midsegment rounded to the nearest tenth and the perimeter of \triangle QPR. Then find the perimeter of the original triangle.

USE THE DISTANCE FORMULA:
$P Q=6.7$
$P R=4.1$
$R Q=4.8$

Perimeter of $\triangle P Q R 15.6$

Perimeter of the original 31.2

EXAMPLE 6:

1. Draw a right triangle with vertices:

- $\quad A(10,0)$
- $\quad B(0,8)$
- $\mathbf{C}(0,0)$

2. Write the equation of $\overleftrightarrow{A B}$ in slope-
intercept form: $y=-4 / 5 X+8$
3. Find the midpoints of $\overline{A C}$ and $\overline{B C}$.
$(5,0),(0,4)$
4. Label the midpoints D and E.
5. Create midsegment $\overline{\mathrm{DE}}$

(connect midpoints D and E).
6. Write the equation of $\overleftrightarrow{D E}$ in slope-
intercept form: $y=-4 / 5 X+4$
QUICK CHECK:
7. Draw a right triangle with vertices:
a. $A(0,8)$
b. $B(0,0)$
c. $C(-6,0)$
8. Write the equation of $\overleftrightarrow{A B}$ in slopeintercept form: $\mathrm{y}=$ \qquad
9. Find the midpoints of $\overline{A B}$ and $\overline{\mathrm{BC}}$.
10. Label the midpoints D and E.

11. Create midsegment $\overline{\mathrm{DE}}$
a. (connect midpoints D and E).
12. Write the equation of $\overleftrightarrow{D E}$ in slopeintercept form: $\mathrm{y}=$ \qquad
